A new software collection for 3D processing of X-ray CT images
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Motivation

APS GmbH is developing a new triaxial testing system for methane hydrate research. Em-
bedded in the latest research project “SUGAR 3” a high-pressure triaxial system is equipped
with high-resolution X-ray computer tomography (XCT). In order to get most accurate re-
sults, a new software solution was developed that analyses objectively obtained XCT-
images. This software solution was developed in cooperation between APS and the Institute
of Applied Geothermal Science of the Technische Universitdt Darmstadt.
A new software is proposed, which is based on machine learning (ML) techniques, for the
2D/3D visualization of XCT data. The segmentation and classification of different phases are;
based on feature vector selection and is performed using unsupervised, supervised, and en-
semble ML techniques [1][2]. Thereafter, using these segmented images, relative porosities
and trends in pore size distribution can be computed. The computational performance is op-|
timized using correlation-based feature vector selection. Furthermore, accuracies of ML
techniques are accessed based on entropy, purity, and receiver operation characteristics.
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Figure 1: Schematic illustration of our proposed method.

Data Analysis
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Figure 2: The top panel shuws the Andesite and Rotliegend sandstone rocks used for XCT measuremems Middle panel shows the raw imag-
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Figure 4: Mean porosity value obtained using supervised, ifiers and P machine learning techniques.

Porosity was computed by indexing out pore phase voxels dlvlded by total no. of matrix voxels multiplied by hundred. The porosity
values were compared with laboratory (Gex Norcross, GA,
USA), which showed very good agreement within 2 %.
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Figure 5: Pore size distribution obtained from the segmented images using modified watershed techniques [3].
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sections using polarized microscope. Bottom panel shows, histogram plot of the respective samples.
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Figure 3: 2D segmented images and volume rendered plot of Andesite samples using unsupervised Machine learning technique
Validation
Andesite Andesite
3.0 T
%— 25 12
£ 20
zE © 5
g 3 15 .2 0.8
Eg
i 10 8z o mKmeans
H gs > =FCM_1.10
2 os g& % %FCM_1.85
00 <
§ o2
= Kmeans =
=FCM_1.10
o 128 three  four five
" som Clusters

£

53

£5 o5 porevs.matrix 100 %

A pore vs. mineral 100 9

2 o4 - --matrix vs. mineral 719
03] Total accuracy = 90 %
02]

01

04 05 06
‘probability of false alarm
(1-Specificity)

Figure 6: top left show the entropy values obtained for Andesite sample

Top right show mean

square root error obtained for Andesite sample classified using feed forward artificial neural network (FFANN). The FFANN was trained using
k-means, Fuzzy C-means with membership function [1.10, 1.85]. The bottom panel shows the receiver operational characteristics of LS-SVM

Conclusions

Machine learning (ML) ive for phase of XCT data. Porosity, pore size distribution and vol-
ume fraction analysis can be Tetrieved with suitable accuracy. Porosity values obtained using ML techniques for volcanic rock, sandstones
are in good to In terms of speed K-means is the fastest among other ML techniques and
Least Square Support Vector Machine (LS-SVM) is the most accurate. We recommend to test different setting and careful feature vector,
selection for best trade-off between computational speed and accuracy.

for classified class four.
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